Search results for "Duality in Gauge Field Theories"
showing 6 items of 6 documents
Sequential deconfinement in 3d N=2 gauge theories
2021
We consider 3d N = 2 gauge theories with fundamental matter plus a single field in a rank-2 representation. Using iteratively a process of "deconfinement" of the rank-2 field, we produce a sequence of Seiberg-dual quiver theories. We detail this process in two examples with zero superpotential: Usp(2N) gauge theory with an antisymmetric field and U(N) gauge theory with an adjoint field. The fully deconfined dual quiver has N nodes, and can be interpreted as an Aharony dual of theories with rank-2 matter. All chiral ring generators of the original theory are mapped into gauge singlet fields of the fully deconfined quiver dual.
The moduli spaces of S-fold CFTs
2019
An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of SL(2,Z). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T(U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turne…
Wilson Loop Form Factors: A New Duality
2017
We find a new duality for form factors of lightlike Wilson loops in planar $\mathcal N=4$ super-Yang-Mills theory. The duality maps a form factor involving an $n$-sided lightlike polygonal super-Wilson loop together with $m$ external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analyti…
Causal representation of multi-loop Feynman integrands within the loop-tree duality
2021
The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops an…
Variations on S-fold CFTs
2019
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involving the T(U(N)) theory. In this paper, we generalise the preceding result by studying quivers that contain a T(G) link, where G is self-dual under S-duality. In particular, the cases of G = SO(2N), USp'(2N) and G_2 are examined in detail. We propose the theories that arise from an appropriate insertion of an S-fold into a brane system, in the presence of an orientifold threeplane or an orientifold fiveplane. By analysing the moduli spaces, we test…
Monopoles and dualities in 3d N=2 quivers
2021
Seiberg-like dualities in 2+1d quiver gauge theories with 4 supercharges are investigated. We consider quivers made of various combinations of classical gauge groups U(N), Sp(N), SO(N) and SU(N). Our main focus is the mapping of the supersymmetric monopole operators across the dual theories. There is a simple general rule that encodes the mapping of the monopoles upon dualizing a single node. This rule dictates the mapping of all the monopoles which are not dressed by baryonic operators. We also study more general situations involving baryons and baryon-monopoles, focussing on three examples: SU−Sp, SO−SO and SO−Sp quivers.